Rotograd: Dynamic Gradient Homogenization for Multitask Learning

1 Jan 2021  ·  Adrián Javaloy, Isabel Valera ·

GradNorm (Chen et al., 2018) is a broadly used gradient-based approach for training multitask networks, where different tasks share, and thus compete during learning, for the network parameters. GradNorm eases the fitting of all individual tasks by dynamically equalizing the contribution of each task to the overall gradient magnitude. However, it does not prevent the individual tasks’ gradients from conflicting, i.e., pointing towards opposite directions, and thus resulting in a poor multitask performance. In this work we propose Rotograd, an extension to GradNorm that addresses this problem by dynamically homogenizing not only the gradient magnitudes but also their directions across tasks. For this purpose,Rotograd adds a layer of task-specific rotation matrices that aligns all the task gradients. Importantly, we then analyze Rotograd (and its predecessor) through the lens of game theory, providing theoretical guarantees on the algorithm stability and convergence. Finally, our experiments on several real-world datasets and network architectures show that Rotograd outperforms previous approaches for multitask learning.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here