2nd Place Solution to Google Universal Image Embedding

17 Oct 2022  ·  Xiaolong Huang, Qiankun Li ·

Image representations are a critical building block of computer vision applications. This paper presents the 2nd place solution to the Google Universal Image Embedding Competition, which is part of the ECCV2022 instance-level recognition workshops. We use the instance-level fine-grained image classification method to complete this competition. We focus on data building and processing, model structure, and training strategies. Finally, the solution scored 0.713 on the public leaderboard and 0.709 on the private leaderboard.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here