S-System, Geometry, Learning, and Optimization: A Theory of Neural Networks

27 Sep 2018  ·  Shuai Li, Kui Jia ·

We present a formal measure-theoretical theory of neural networks (NN) built on {\it probability coupling theory}. Particularly, we present an algorithm framework, Hierarchical Measure Group and Approximate System (HMGAS), nicknamed S-System, of which NNs are special cases. In addition to many other results, the framework enables us to prove that 1) NNs implement {\it renormalization group (RG)} using information geometry, which points out that the large scale property to renormalize is dual Bregman divergence and completes the analog between NNs and RG; 2) and under a set of {\it realistic} boundedness and diversity conditions, for {\it large size nonlinear deep} NNs with a class of losses, including the hinge loss, all local minima are global minima with zero loss errors, using random matrix theory.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here