Safe Approximate Dynamic Programming Via Kernelized Lipschitz Estimation
We develop a method for obtaining safe initial policies for reinforcement learning via approximate dynamic programming (ADP) techniques for uncertain systems evolving with discrete-time dynamics. We employ kernelized Lipschitz estimation and semidefinite programming for computing admissible initial control policies with provably high probability. Such admissible controllers enable safe initialization and constraint enforcement while providing exponential stability of the equilibrium of the closed-loop system.
PDF AbstractDatasets
Add Datasets
introduced or used in this paper
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here