Sample Complexity of Policy Gradient Finding Second-Order Stationary Points

2 Dec 2020  ·  Long Yang, Qian Zheng, Gang Pan ·

The goal of policy-based reinforcement learning (RL) is to search the maximal point of its objective. However, due to the inherent non-concavity of its objective, convergence to a first-order stationary point (FOSP) can not guarantee the policy gradient methods finding a maximal point. A FOSP can be a minimal or even a saddle point, which is undesirable for RL. Fortunately, if all the saddle points are \emph{strict}, all the second-order stationary points (SOSP) are exactly equivalent to local maxima. Instead of FOSP, we consider SOSP as the convergence criteria to character the sample complexity of policy gradient. Our result shows that policy gradient converges to an $(\epsilon,\sqrt{\epsilon\chi})$-SOSP with probability at least $1-\widetilde{\mathcal{O}}(\delta)$ after the total cost of $\mathcal{O}\left(\dfrac{\epsilon^{-\frac{9}{2}}}{(1-\gamma)\sqrt\chi}\log\dfrac{1}{\delta}\right)$, where $\gamma\in(0,1)$. Our result improves the state-of-the-art result significantly where it requires $\mathcal{O}\left(\dfrac{\epsilon^{-9}\chi^{\frac{3}{2}}}{\delta}\log\dfrac{1}{\epsilon\chi}\right)$. Our analysis is based on the key idea that decomposes the parameter space $\mathbb{R}^p$ into three non-intersected regions: non-stationary point, saddle point, and local optimal region, then making a local improvement of the objective of RL in each region. This technique can be potentially generalized to extensive policy gradient methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here