Satisficing in Time-Sensitive Bandit Learning

7 Mar 2018  ·  Daniel Russo, Benjamin Van Roy ·

Much of the recent literature on bandit learning focuses on algorithms that aim to converge on an optimal action. One shortcoming is that this orientation does not account for time sensitivity, which can play a crucial role when learning an optimal action requires much more information than near-optimal ones. Indeed, popular approaches such as upper-confidence-bound methods and Thompson sampling can fare poorly in such situations. We consider instead learning a satisficing action, which is near-optimal while requiring less information, and propose satisficing Thompson sampling, an algorithm that serves this purpose. We establish a general bound on expected discounted regret and study the application of satisficing Thompson sampling to linear and infinite-armed bandits, demonstrating arbitrarily large benefits over Thompson sampling. We also discuss the relation between the notion of satisficing and the theory of rate distortion, which offers guidance on the selection of satisficing actions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here