Scalable Learning for Optimal Load Shedding Under Power Grid Emergency Operations

23 Nov 2021  ·  Yuqi Zhou, Jeehyun Park, Hao Zhu ·

Effective and timely responses to unexpected contingencies are crucial for enhancing the resilience of power grids. Given the fast, complex process of cascading propagation, corrective actions such as optimal load shedding (OLS) are difficult to attain in large-scale networks due to the computation complexity and communication latency issues. This work puts forth an innovative learning-for-OLS approach by constructing the optimal decision rules of load shedding under a variety of potential contingency scenarios through offline neural network (NN) training. Notably, the proposed NN-based OLS decisions are fully decentralized, enabling individual load centers to quickly react to the specific contingency using readily available local measurements. Numerical studies on the IEEE 14-bus system have demonstrated the effectiveness of our scalable OLS design for real-time responses to severe grid emergency events.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here