Scalable Variational Inference for Dynamical Systems

Gradient matching is a promising tool for learning parameters and state dynamics of ordinary differential equations. It is a grid free inference approach, which, for fully observable systems is at times competitive with numerical integration. However, for many real-world applications, only sparse observations are available or even unobserved variables are included in the model description. In these cases most gradient matching methods are difficult to apply or simply do not provide satisfactory results. That is why, despite the high computational cost, numerical integration is still the gold standard in many applications. Using an existing gradient matching approach, we propose a scalable variational inference framework which can infer states and parameters simultaneously, offers computational speedups, improved accuracy and works well even under model misspecifications in a partially observable system.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here