Scale-invariant unconstrained online learning

23 Aug 2017  ·  Wojciech Kotłowski ·

We consider a variant of online convex optimization in which both the instances (input vectors) and the comparator (weight vector) are unconstrained. We exploit a natural scale invariance symmetry in our unconstrained setting: the predictions of the optimal comparator are invariant under any linear transformation of the instances. Our goal is to design online algorithms which also enjoy this property, i.e. are scale-invariant. We start with the case of coordinate-wise invariance, in which the individual coordinates (features) can be arbitrarily rescaled. We give an algorithm, which achieves essentially optimal regret bound in this setup, expressed by means of a coordinate-wise scale-invariant norm of the comparator. We then study general invariance with respect to arbitrary linear transformations. We first give a negative result, showing that no algorithm can achieve a meaningful bound in terms of scale-invariant norm of the comparator in the worst case. Next, we compliment this result with a positive one, providing an algorithm which "almost" achieves the desired bound, incurring only a logarithmic overhead in terms of the norm of the instances.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here