Scaled Least Squares Estimator for GLMs in Large-Scale Problems

We study the problem of efficiently estimating the coefficients of generalized linear models (GLMs) in the large-scale setting where the number of observations $n$ is much larger than the number of predictors $p$, i.e. $n\gg p \gg 1$. We show that in GLMs with random (not necessarily Gaussian) design, the GLM coefficients are approximately proportional to the corresponding ordinary least squares (OLS) coefficients. Using this relation, we design an algorithm that achieves the same accuracy as the maximum likelihood estimator (MLE) through iterations that attain up to a cubic convergence rate, and that are cheaper than any batch optimization algorithm by at least a factor of $\mathcal{O}(p)$. We provide theoretical guarantees for our algorithm, and analyze the convergence behavior in terms of data dimensions. % Finally, we demonstrate the performance of our algorithm through extensive numerical studies on large-scale real and synthetic datasets, and show that it achieves the highest performance compared to several other widely used optimization algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here