Scaling Laws for Discriminative Speech Recognition Rescoring Models

Recent studies have found that model performance has a smooth power-law relationship, or scaling laws, with training data and model size, for a wide range of problems. These scaling laws allow one to choose nearly optimal data and model sizes. We study whether this scaling property is also applicable to second-pass rescoring, which is an important component of speech recognition systems. We focus on RescoreBERT as the rescoring model, which uses a pre-trained Transformer-based architecture fined tuned with an ASR discriminative loss. Using such a rescoring model, we show that the word error rate (WER) follows a scaling law for over two orders of magnitude as training data and model size increase. In addition, it is found that a pre-trained model would require less data than a randomly initialized model of the same size, representing effective data transferred from pre-training step. This effective data transferred is found to also follow a scaling law with the data and model size.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods