Scaling up machine learning-based chemical plant simulation: A method for fine-tuning a model to induce stable fixed points

25 Jul 2023  ·  Malte Esders, Gimmy Alex Fernandez Ramirez, Michael Gastegger, Satya Swarup Samal ·

Idealized first-principles models of chemical plants can be inaccurate. An alternative is to fit a Machine Learning (ML) model directly to plant sensor data. We use a structured approach: Each unit within the plant gets represented by one ML model. After fitting the models to the data, the models are connected into a flowsheet-like directed graph. We find that for smaller plants, this approach works well, but for larger plants, the complex dynamics arising from large and nested cycles in the flowsheet lead to instabilities in the solver during model initialization. We show that a high accuracy of the single-unit models is not enough: The gradient can point in unexpected directions, which prevents the solver from converging to the correct stationary state. To address this problem, we present a way to fine-tune ML models such that initialization, even with very simple solvers, becomes robust.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here