Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows

6 Oct 2021  ·  Pim de Haan, Corrado Rainone, Miranda C. N. Cheng, Roberto Bondesan ·

We propose a continuous normalizing flow for sampling from the high-dimensional probability distributions of Quantum Field Theories in Physics. In contrast to the deep architectures used so far for this task, our proposal is based on a shallow design and incorporates the symmetries of the problem. We test our model on the $\phi^4$ theory, showing that it systematically outperforms a realNVP baseline in sampling efficiency, with the difference between the two increasing for larger lattices. On the largest lattice we consider, of size $32\times 32$, we improve a key metric, the effective sample size, from 1% to 66% w.r.t. the realNVP baseline.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods