SciANN: A Keras wrapper for scientific computations and physics-informed deep learning using artificial neural networks

11 May 2020Ehsan HaghighatRuben Juanes

In this paper, we introduce SciANN, a Python package for scientific computing and physics-informed deep learning using artificial neural networks. SciANN uses the widely used deep-learning packages Tensorflow and Keras to build deep neural networks and optimization models, thus inheriting many of Keras's functionalities, such as batch optimization and model reuse for transfer learning... (read more)

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet