SciConceptMiner: A system for large-scale scientific concept discovery

Scientific knowledge is evolving at an unprecedented rate of speed, with new concepts constantly being introduced from millions of academic articles published every month. In this paper, we introduce a self-supervised end-to-end system, SciConceptMiner, for the automatic capture of emerging scientific concepts from both independent knowledge sources (semi-structured data) and academic publications (unstructured documents). First, we adopt a BERT-based sequence labeling model to predict candidate concept phrases with self-supervision data. Then, we incorporate rich Web content for synonym detection and concept selection via a web search API. This two-stage approach achieves highly accurate (94.7{\%}) concept identification with more than 740K scientific concepts. These concepts are deployed in the Microsoft Academic production system and are the backbone for its semantic search capability.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here