Scoot: A Perceptual Metric for Facial Sketches

Human visual system has the strong ability to quick assess the perceptual similarity between two facial sketches. However, existing two widely-used facial sketch metrics, e.g., FSIM and SSIM fail to address this perceptual similarity in this field. Recent study in facial modeling area has verified that the inclusion of both structure and texture has a significant positive benefit for face sketch synthesis (FSS). But which statistics are more important, and are helpful for their success? In this paper, we design a perceptual metric,called Structure Co-Occurrence Texture (Scoot), which simultaneously considers the block-level spatial structure and co-occurrence texture statistics. To test the quality of metrics, we propose three novel meta-measures based on various reliable properties. Extensive experiments demonstrate that our Scoot metric exceeds the performance of prior work. Besides, we built the first large scale (152k judgments) human-perception-based sketch database that can evaluate how well a metric is consistent with human perception. Our results suggest that "spatial structure" and "co-occurrence texture" are two generally applicable perceptual features in face sketch synthesis.

PDF Abstract ICCV 2019 PDF ICCV 2019 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here