SDCA without Duality, Regularization, and Individual Convexity

4 Feb 2016Shai Shalev-Shwartz

Stochastic Dual Coordinate Ascent is a popular method for solving regularized loss minimization for the case of convex losses. We describe variants of SDCA that do not require explicit regularization and do not rely on duality... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.