Secure Dual-Functional Radar-Communication Transmission: Exploiting Interference for Resilience Against Target Eavesdropping

10 Jul 2021  ·  Nanchi Su, Fan Liu, Zhongxiang Wei, Ya-Feng Liu, Christos Masouros ·

We study security solutions for dual-functional radar communication (DFRC) systems, which detect the radar target and communicate with downlink cellular users in millimeter-wave (mmWave) wireless networks simultaneously. Uniquely for such scenarios, the radar target is regarded as a potential eavesdropper which might surveil the information sent from the base station (BS) to communication users (CUs), that is carried by the radar probing signal. Transmit waveform and receive beamforming are jointly designed to maximize the signal-to-interference-plus-noise ratio (SINR) of the radar under the security and power budget constraints. We apply a Directional Modulation (DM) approach to exploit constructive interference (CI), where the known multiuser interference (MUI) can be exploited as a source of useful signal. Moreover, to further deteriorate the eavesdropping signal at the radar target, we utilize destructive interference (DI) by pushing the received symbols at the target towards the destructive region of the signal constellation. Our numerical results verify the effectiveness of the proposed design showing a secure transmission with enhanced performance against benchmark DFRC techniques.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here