SecureCut: Federated Gradient Boosting Decision Trees with Efficient Machine Unlearning

22 Nov 2023  ·  Jian Zhang, Bowen Li Jie Li, Chentao Wu ·

In response to legislation mandating companies to honor the \textit{right to be forgotten} by erasing user data, it has become imperative to enable data removal in Vertical Federated Learning (VFL) where multiple parties provide private features for model training. In VFL, data removal, i.e., \textit{machine unlearning}, often requires removing specific features across all samples under privacy guarentee in federated learning. To address this challenge, we propose \methname, a novel Gradient Boosting Decision Tree (GBDT) framework that effectively enables both \textit{instance unlearning} and \textit{feature unlearning} without the need for retraining from scratch. Leveraging a robust GBDT structure, we enable effective data deletion while reducing degradation of model performance. Extensive experimental results on popular datasets demonstrate that our method achieves superior model utility and forgetfulness compared to \textit{state-of-the-art} methods. To our best knowledge, this is the first work that investigates machine unlearning in VFL scenarios.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here