Seeding the Initial Population of Multi-Objective Evolutionary Algorithms: A Computational Study

30 Nov 2014  ·  Tobias Friedrich, Markus Wagner ·

Most experimental studies initialize the population of evolutionary algorithms with random genotypes. In practice, however, optimizers are typically seeded with good candidate solutions either previously known or created according to some problem-specific method. This "seeding" has been studied extensively for single-objective problems. For multi-objective problems, however, very little literature is available on the approaches to seeding and their individual benefits and disadvantages. In this article, we are trying to narrow this gap via a comprehensive computational study on common real-valued test functions. We investigate the effect of two seeding techniques for five algorithms on 48 optimization problems with 2, 3, 4, 6, and 8 objectives. We observe that some functions (e.g., DTLZ4 and the LZ family) benefit significantly from seeding, while others (e.g., WFG) profit less. The advantage of seeding also depends on the examined algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here