Self-supervised Dataset Distillation: A Good Compression Is All You Need

11 Apr 2024  ·  Muxin Zhou, Zeyuan Yin, Shitong Shao, Zhiqiang Shen ·

Dataset distillation aims to compress information from a large-scale original dataset to a new compact dataset while striving to preserve the utmost degree of the original data informational essence. Previous studies have predominantly concentrated on aligning the intermediate statistics between the original and distilled data, such as weight trajectory, features, gradient, BatchNorm, etc. In this work, we consider addressing this task through the new lens of model informativeness in the compression stage on the original dataset pretraining. We observe that with the prior state-of-the-art SRe$^2$L, as model sizes increase, it becomes increasingly challenging for supervised pretrained models to recover learned information during data synthesis, as the channel-wise mean and variance inside the model are flatting and less informative. We further notice that larger variances in BN statistics from self-supervised models enable larger loss signals to update the recovered data by gradients, enjoying more informativeness during synthesis. Building on this observation, we introduce SC-DD, a simple yet effective Self-supervised Compression framework for Dataset Distillation that facilitates diverse information compression and recovery compared to traditional supervised learning schemes, further reaps the potential of large pretrained models with enhanced capabilities. Extensive experiments are conducted on CIFAR-100, Tiny-ImageNet and ImageNet-1K datasets to demonstrate the superiority of our proposed approach. The proposed SC-DD outperforms all previous state-of-the-art supervised dataset distillation methods when employing larger models, such as SRe$^2$L, MTT, TESLA, DC, CAFE, etc., by large margins under the same recovery and post-training budgets. Code is available at https://github.com/VILA-Lab/SRe2L/tree/main/SCDD/.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here