Self-Triggered Markov Decision Processes

17 Feb 2021  ·  Yunhan Huang, Quanyan Zhu ·

In this paper, we study Markov Decision Processes (MDPs) with self-triggered strategies, where the idea of self-triggered control is extended to more generic MDP models. This extension broadens the application of self-triggering policies to a broader range of systems. We study the co-design problems of the control policy and the triggering policy to optimize two pre-specified cost criteria. The first cost criterion is introduced by incorporating a pre-specified update penalty into the traditional MDP cost criteria to reduce the use of communication resources. Under this criteria, a novel dynamic programming (DP) equation called DP equation with optimized lookahead to proposed to solve for the self-triggering policy under this criteria. The second self-triggering policy is to maximize the triggering time while still guaranteeing a pre-specified level of sub-optimality. Theoretical underpinnings are established for the computation and implementation of both policies. Through a gridworld numerical example, we illustrate the two policies' effectiveness in reducing sources consumption and demonstrate the trade-offs between resource consumption and system performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here