Semantic Discord: Finding Unusual Local Patterns for Time Series

30 Jan 2020 Li Zhang Yifeng Gao Jessica Lin

Finding anomalous subsequence in a long time series is a very important but difficult problem. Existing state-of-the-art methods have been focusing on searching for the subsequence that is the most dissimilar to the rest of the subsequences; however, they do not take into account the background patterns that contain the anomalous candidates... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet