Semantic Explanations of Predictions

27 May 2018  ·  Freddy Lecue, Jiewen Wu ·

The main objective of explanations is to transmit knowledge to humans. This work proposes to construct informative explanations for predictions made from machine learning models... Motivated by the observations from social sciences, our approach selects data points from the training sample that exhibit special characteristics crucial for explanation, for instance, ones contrastive to the classification prediction and ones representative of the models. Subsequently, semantic concepts are derived from the selected data points through the use of domain ontologies. These concepts are filtered and ranked to produce informative explanations that improves human understanding. The main features of our approach are that (1) knowledge about explanations is captured in the form of ontological concepts, (2) explanations include contrastive evidences in addition to normal evidences, and (3) explanations are user relevant. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here