Semantic Kernel Forests from Multiple Taxonomies

When learning features for complex visual recognition problems, labeled image exemplars alone can be insufficient. While an \emph{object taxonomy} specifying the categories' semantic relationships could bolster the learning process, not all relationships are relevant to a given visual classification task, nor does a single taxonomy capture all ties that \emph{are} relevant... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet