Semantic Refinement GRU-based Neural Language Generation for Spoken Dialogue Systems

1 Jun 2017  ·  Van-Khanh Tran, Le-Minh Nguyen ·

Natural language generation (NLG) plays a critical role in spoken dialogue systems. This paper presents a new approach to NLG by using recurrent neural networks (RNN), in which a gating mechanism is applied before RNN computation... This allows the proposed model to generate appropriate sentences. The RNN-based generator can be learned from unaligned data by jointly training sentence planning and surface realization to produce natural language responses. The model was extensively evaluated on four different NLG domains. The results show that the proposed generator achieved better performance on all the NLG domains compared to previous generators. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here