Semi-analytic PINN methods for singularly perturbed boundary value problems

19 Aug 2022  ·  Gung-Min Gie, Youngjoon Hong, Chang-Yeol Jung ·

We propose a new semi-analytic physics informed neural network (PINN) to solve singularly perturbed boundary value problems. The PINN is a scientific machine learning framework that offers a promising perspective for finding numerical solutions to partial differential equations. The PINNs have shown impressive performance in solving various differential equations including time-dependent and multi-dimensional equations involved in a complex geometry of the domain. However, when considering stiff differential equations, neural networks in general fail to capture the sharp transition of solutions, due to the spectral bias. To resolve this issue, here we develop the semi-analytic PINN methods, enriched by using the so-called corrector functions obtained from the boundary layer analysis. Our new enriched PINNs accurately predict numerical solutions to the singular perturbation problems. Numerical experiments include various types of singularly perturbed linear and nonlinear differential equations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here