Semi-Data-Aided Channel Estimation for MIMO Systems via Reinforcement Learning

3 Apr 2022  ·  Tae-Kyoung Kim, Yo-Seb Jeon, Jun Li, Nima Tavangaran, H. Vincent Poor ·

Data-aided channel estimation is a promising solution to improve channel estimation accuracy by exploiting data symbols as pilot signals for updating an initial channel estimate. In this paper, we propose a semi-data-aided channel estimator for multiple-input multiple-output communication systems. Our strategy is to leverage reinforcement learning (RL) for selecting reliable detected symbols among the symbols in the first part of transmitted data block. This strategy facilitates an update of the channel estimate before the end of data block transmission and therefore achieves a significant reduction in communication latency compared to conventional data-aided channel estimation approaches. Towards this end, we first define a Markov decision process (MDP) which sequentially decides whether to use each detected symbol as an additional pilot signal. We then develop an RL algorithm to efficiently find the best policy of the MDP based on a Monte Carlo tree search approach. In this algorithm, we exploit the a-posteriori probability for approximating both the optimal future actions and the corresponding state transitions of the MDP and derive a closed-form expression for the best policy. Simulation results demonstrate that the proposed channel estimator effectively mitigates both channel estimation error and detection performance loss caused by insufficient pilot signals.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here