Semi-supervised K-means++

1 Feb 2016Jordan YoderCarey E. Priebe

Traditionally, practitioners initialize the {\tt k-means} algorithm with centers chosen uniformly at random. Randomized initialization with uneven weights ({\tt k-means++}) has recently been used to improve the performance over this strategy in cost and run-time... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet