Semi-Supervised Learning Enabled by Multiscale Deep Neural Network Inversion

27 Feb 2018  ·  Randall Balestriero, Herve Glotin, Richard Baraniuk ·

Deep Neural Networks (DNNs) provide state-of-the-art solutions in several difficult machine perceptual tasks. However, their performance relies on the availability of a large set of labeled training data, which limits the breadth of their applicability. Hence, there is a need for new {\em semi-supervised learning} methods for DNNs that can leverage both (a small amount of) labeled and unlabeled training data. In this paper, we develop a general loss function enabling DNNs of any topology to be trained in a semi-supervised manner without extra hyper-parameters. As opposed to current semi-supervised techniques based on topology-specific or unstable approaches, ours is both robust and general. We demonstrate that our approach reaches state-of-the-art performance on the SVHN ($9.82\%$ test error, with $500$ labels and wide Resnet) and CIFAR10 (16.38% test error, with 8000 labels and sigmoid convolutional neural network) data sets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here