Semisupervised Adversarial Neural Networks for Cyber Security Transfer Learning

25 Jul 2019  ·  Casey Kneale, Kolia Sadeghi ·

On the path to establishing a global cybersecurity framework where each enterprise shares information about malicious behavior, an important question arises. How can a machine learning representation characterizing a cyber attack on one network be used to detect similar attacks on other enterprise networks if each networks has wildly different distributions of benign and malicious traffic? We address this issue by comparing the results of naively transferring a model across network domains and using CORrelation ALignment, to our novel adversarial Siamese neural network. Our proposed model learns attack representations that are more invariant to each network's particularities via an adversarial approach. It uses a simple ranking loss that prioritizes the labeling of the most egregious malicious events correctly over average accuracy. This is appropriate for driving an alert triage workflow wherein an analyst only has time to inspect the top few events ranked highest by the model. In terms of accuracy, the other approaches fail completely to detect any malicious events when models were trained on one dataset are evaluated on another for the first 100 events. While, the method presented here retrieves sizable proportions of malicious events, at the expense of some training instabilities due in adversarial modeling. We evaluate these approaches using 2 publicly available networking datasets, and suggest areas for future research.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here