SenGen: Sentence Generating Neural Variational Topic Model

We present a new topic model that generates documents by sampling a topic for one whole sentence at a time, and generating the words in the sentence using an RNN decoder that is conditioned on the topic of the sentence. We argue that this novel formalism will help us not only visualize and model the topical discourse structure in a document better, but also potentially lead to more interpretable topics since we can now illustrate topics by sampling representative sentences instead of bag of words or phrases... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet