Sentence Analogies: Exploring Linguistic Relationships and Regularities in Sentence Embeddings

9 Mar 2020  ·  Xunjie Zhu, Gerard de Melo ·

While important properties of word vector representations have been studied extensively, far less is known about the properties of sentence vector representations. Word vectors are often evaluated by assessing to what degree they exhibit regularities with regard to relationships of the sort considered in word analogies. In this paper, we investigate to what extent commonly used sentence vector representation spaces as well reflect certain kinds of regularities. We propose a number of schemes to induce evaluation data, based on lexical analogy data as well as semantic relationships between sentences. Our experiments consider a wide range of sentence embedding methods, including ones based on BERT-style contextual embeddings. We find that different models differ substantially in their ability to reflect such regularities.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here