Sentence-level quality estimation by predicting HTER as a multi-component metric

WS 2017  ·  Eleftherios Avramidis ·

This submission investigates alternative machine learning models for predicting the HTER score on the sentence level. Instead of directly predicting the HTER score, we suggest a model that jointly predicts the amount of the 4 distinct post-editing operations, which are then used to calculate the HTER score... This also gives the possibility to correct invalid (e.g. negative) predicted values prior to the calculation of the HTER score. Without any feature exploration, a multi-layer perceptron with 4 outputs yields small but significant improvements over the baseline. read more

PDF Abstract WS 2017 PDF WS 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here