Sequential- and Parallel- Constrained Max-value Entropy Search via Information Lower Bound

19 Feb 2021  ·  Shion Takeno, Tomoyuki Tamura, Kazuki Shitara, Masayuki Karasuyama ·

Max-value entropy search (MES) is one of the state-of-the-art approaches in Bayesian optimization (BO). In this paper, we propose a novel variant of MES for constrained problems, called Constrained MES via Information lower BOund (CMES-IBO), that is based on a Monte Carlo (MC) estimator of a lower bound of a mutual information (MI). Unlike existing studies, our MI is defined so that uncertainty with respect to feasibility can be incorporated. We derive a lower bound of the MI that guarantees non-negativity, while a constrained counterpart of conventional MES can be negative. We further provide theoretical analysis that assures the low-variability of our estimator which has never been investigated for any existing information-theoretic BO. Moreover, using the conditional MI, we extend CMES-IBO to the parallel setting while maintaining the desirable properties. We demonstrate the effectiveness of CMES-IBO by several benchmark functions and real-world problems.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here