Sequential Gaussian Processes for Online Learning of Nonstationary Functions

Many machine learning problems can be framed in the context of estimating functions, and often these are time-dependent functions that are estimated in real-time as observations arrive. Gaussian processes (GPs) are an attractive choice for modeling real-valued nonlinear functions due to their flexibility and uncertainty quantification. However, the typical GP regression model suffers from several drawbacks: 1) Conventional GP inference scales $O(N^{3})$ with respect to the number of observations; 2) Updating a GP model sequentially is not trivial; and 3) Covariance kernels typically enforce stationarity constraints on the function, while GPs with non-stationary covariance kernels are often intractable to use in practice. To overcome these issues, we propose a sequential Monte Carlo algorithm to fit infinite mixtures of GPs that capture non-stationary behavior while allowing for online, distributed inference. Our approach empirically improves performance over state-of-the-art methods for online GP estimation in the presence of non-stationarity in time-series data. To demonstrate the utility of our proposed online Gaussian process mixture-of-experts approach in applied settings, we show that we can sucessfully implement an optimization algorithm using online Gaussian process bandits.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here