Sequential modeling of Sessions using Recurrent Neural Networks for Skip Prediction

23 Apr 2019  ·  Sainath Adapa ·

Recommender systems play an essential role in music streaming services, prominently in the form of personalized playlists. Exploring the user interactions within these listening sessions can be beneficial to understanding the user preferences in the context of a single session. In the 'Spotify Sequential Skip Prediction Challenge', WSDM, and Spotify are challenging people to understand the way users sequentially interact with music. We describe our solution approach in this paper and also state proposals for further improvements to the model. The proposed model initially generates a fixed vector representation of the session, and this additional information is incorporated into an Encoder-Decoder style architecture. This method achieved the seventh position in the competition, with a mean average accuracy of 0.604 on the test set. The solution code is available at https://github.com/sainathadapa/spotify-sequential-skip-prediction.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here