Sex as Gibbs Sampling: a probability model of evolution

12 Feb 2014Chris WatkinsYvonne Buttkewitz

We show that evolutionary computation can be implemented as standard Markov-chain Monte-Carlo (MCMC) sampling. With some care, `genetic algorithms' can be constructed that are reversible Markov chains that satisfy detailed balance; it follows that the stationary distribution of populations is a Gibbs distribution in a simple factorised form... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet