SGD-Net: Efficient Model-Based Deep Learning with Theoretical Guarantees

22 Jan 2021  ·  Jiaming Liu, Yu Sun, Weijie Gan, Xiaojian Xu, Brendt Wohlberg, Ulugbek S. Kamilov ·

Deep unfolding networks have recently gained popularity in the context of solving imaging inverse problems. However, the computational and memory complexity of data-consistency layers within traditional deep unfolding networks scales with the number of measurements, limiting their applicability to large-scale imaging inverse problems. We propose SGD-Net as a new methodology for improving the efficiency of deep unfolding through stochastic approximations of the data-consistency layers. Our theoretical analysis shows that SGD-Net can be trained to approximate batch deep unfolding networks to an arbitrary precision. Our numerical results on intensity diffraction tomography and sparse-view computed tomography show that SGD-Net can match the performance of the batch network at a fraction of training and testing complexity.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here