SGL: Spectral Graph Learning from Measurements

16 Apr 2021  ·  Zhuo Feng ·

This work introduces a highly scalable spectral graph densification framework for learning resistor networks with linear measurements, such as node voltages and currents. We prove that given $O(\log N)$ pairs of voltage and current measurements, it is possible to recover ultra-sparse $N$-node resistor networks which can well preserve the effective resistance distances on the graph. Also, the learned graphs preserve the structural (spectral) properties of the original graph, which can potentially be leveraged in many circuit design and optimization tasks. We show that the proposed graph learning approach is equivalent to solving the classical graphical Lasso problems with Laplacian-like precision matrices. Through extensive experiments for a variety of real-world test cases, we show that the proposed approach is highly scalable for learning ultra-sparse resistor networks without sacrificing solution quality.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here