SGM-Nets: Semi-Global Matching With Neural Networks

CVPR 2017  ·  Akihito Seki, Marc Pollefeys ·

This paper deals with deep neural networks for predicting accurate dense disparity map with Semi-global matching (SGM). SGM is a widely used regularization method for real scenes because of its high accuracy and fast computation speed. Even though SGM can obtain accurate results, tuning of SGM's penalty-parameters, which control a smoothness and discontinuity of a disparity map, is uneasy and empirical methods have been proposed. We propose a learning based penalties estimation method, which we call SGM-Nets that consist of Convolutional Neural Networks. A small image patch and its position are input into SGMNets to predict the penalties for the 3D object structures. In order to train the networks, we introduce a novel loss function which is able to use sparsely annotated disparity maps such as captured by a LiDAR sensor in real environments. Moreover, we propose a novel SGM parameterization, which deploys different penalties depending on either positive or negative disparity changes in order to represent the object structures more discriminatively. Our SGM-Nets outperformed state of the art accuracy on KITTI benchmark datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here