“Shakespeare in the Vectorian Age” – An evaluation of different word embeddings and NLP parameters for the detection of Shakespeare quotes

In this paper we describe an approach for the computer-aided identification of Shakespearean intertextuality in a corpus of contemporary fiction. We present the Vectorian, which is a framework that implements different word embeddings and various NLP parameters. The Vectorian works like a search engine, i.e. a Shakespeare phrase can be entered as a query, the underlying collection of fiction books is then searched for the phrase and the passages that are likely to contain the phrase, either verbatim or as a paraphrase, are presented in a ranked results list. While the Vectorian can be used via a GUI, in which many different parameters can be set and combined manually, in this paper we present an ablation study that automatically evaluates different embedding and NLP parameter combinations against a ground truth. We investigate the behavior of different parameters during the evaluation and discuss how our results may be used for future studies on the detection of Shakespearean intertextuality.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here