Shape analysis via inconsistent surface registration

3 Mar 2020  ·  Gary P. T. Choi, Di Qiu, Lok Ming Lui ·

In this work, we develop a framework for shape analysis using inconsistent surface mapping. Traditional landmark-based geometric morphometrics methods suffer from the limited degrees of freedom, while most of the more advanced non-rigid surface mapping methods rely on a strong assumption of the global consistency of two surfaces. From a practical point of view, given two anatomical surfaces with prominent feature landmarks, it is more desirable to have a method that automatically detects the most relevant parts of the two surfaces and finds the optimal landmark-matching alignment between those parts, without assuming any global 1-1 correspondence between the two surfaces. Our method is capable of solving this problem using inconsistent surface registration based on quasi-conformal theory. It further enables us to quantify the dissimilarity of two shapes using quasi-conformal distortion and differences in mean and Gaussian curvatures, thereby providing a natural way for shape classification. Experiments on Platyrrhine molars demonstrate the effectiveness of our method and shed light on the interplay between function and shape in nature.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here