Shape and Viewpoint without Keypoints

ECCV 2020 Shubham GoelAngjoo KanazawaJitendra Malik

We present a learning framework that learns to recover the 3D shape, pose and texture from a single image, trained on an image collection without any ground truth 3D shape, multi-view, camera viewpoints or keypoint supervision. We approach this highly under-constrained problem in a "analysis by synthesis" framework where the goal is to predict the likely shape, texture and camera viewpoint that could produce the image with various learned category-specific priors... (read more)

PDF Abstract ECCV 2020 PDF ECCV 2020 Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet