Estimating Shape Parameters of Piecewise Linear-Quadratic Problems

6 Jun 2017  ·  Peng Zheng, Aleksandr Y. Aravkin, Karthikeyan Natesan Ramamurthy ·

Piecewise Linear-Quadratic (PLQ) penalties are widely used to develop models in statistical inference, signal processing, and machine learning. Common examples of PLQ penalties include least squares, Huber, Vapnik, 1-norm, and their asymmetric generalizations. Properties of these estimators depend on the choice of penalty and its shape parameters, such as degree of asymmetry for the quantile loss, and transition point between linear and quadratic pieces for the Huber function. In this paper, we develop a statistical framework that can help the modeler to automatically tune shape parameters once the shape of the penalty has been chosen. The choice of the parameter is informed by the basic notion that each QS penalty should correspond to a true statistical density. The normalization constant inherent in this requirement helps to inform the optimization over shape parameters, giving a joint optimization problem over these as well as primary parameters of interest. A second contribution is to consider optimization methods for these joint problems. We show that basic first-order methods can be immediately brought to bear, and design specialized extensions of interior point (IP) methods for PLQ problems that can quickly and efficiently solve the joint problem. Synthetic problems and larger-scale practical examples illustrate the potential of the approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods