Parametric inference with universal function approximators

11 Mar 2019  ·  Andreas Joseph ·

Universal function approximators, such as artificial neural networks, can learn a large variety of target functions arbitrarily well given sufficient training data. This flexibility comes at the cost of the ability to perform parametric inference. We address this gap by proposing a generic framework based on the Shapley-Taylor decomposition of a model. A surrogate parametric regression analysis is performed in the space spanned by the Shapley value expansion of a model. This allows for the testing of standard hypotheses of interest. At the same time, the proposed approach provides novel insights into statistical learning processes themselves derived from the consistency and bias properties of the nonparametric estimators. We apply the framework to the estimation of heterogeneous treatment effects in simulated and real-world randomised experiments. We introduce an explicit treatment function based on higher-order Shapley-Taylor indices. This can be used to identify potentially complex treatment channels and help the generalisation of findings from experimental settings. More generally, the presented approach allows for a standardised use and communication of results from machine learning models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here