Sharing to learn and learning to share; Fitting together Meta-Learning, Multi-Task Learning, and Transfer Learning: A meta review

23 Nov 2021  ·  Richa Upadhyay, Ronald Phlypo, Rajkumar Saini, Marcus Liwicki ·

Integrating knowledge across different domains is an essential feature of human learning. Learning paradigms such as transfer learning, meta learning, and multi-task learning reflect the human learning process by exploiting the prior knowledge for new tasks, encouraging faster learning and good generalization for new tasks. This article gives a detailed view of these learning paradigms and their comparative analysis. The weakness of one learning algorithm turns out to be a strength of another, and thus, merging them is a prevalent trait in the literature. Numerous research papers focus on each of these learning paradigms separately and provide a comprehensive overview of them. However, this article reviews research studies that combine (two of) these learning algorithms. This survey describes how these techniques are combined to solve problems in many different fields of research, including computer vision, natural language processing, hyper-spectral imaging, and many more, in a supervised setting only. Based on the knowledge accumulated from the literature, we hypothesize a generic task-agnostic and model-agnostic learning network - an ensemble of meta learning, transfer learning, and multi-task learning, termed Multi-modal Multi-task Meta Transfer Learning. We also present some open research questions, limitations, and future research directions for this proposed network. The aim of this article is to spark interest among scholars in effectively merging existing learning algorithms with the intention of advancing research in this field. Instead of presenting experimental results, we invite readers to explore and contemplate techniques for merging algorithms while navigating through their limitations.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here