Sharp Noisy Binary Search with Monotonic Probabilities

1 Nov 2023  ·  Lucas Gretta, Eric Price ·

We revisit the noisy binary search model of Karp and Kleinberg, in which we have $n$ coins with unknown probabilities $p_i$ that we can flip. The coins are sorted by increasing $p_i$, and we would like to find where the probability crosses (to within $\varepsilon$) of a target value $\tau$. This generalized the fixed-noise model of Burnashev and Zigangirov , in which $p_i = \frac{1}{2} \pm \varepsilon$, to a setting where coins near the target may be indistinguishable from it. Karp and Kleinberg showed that $\Theta(\frac{1}{\varepsilon^2} \log n)$ samples are necessary and sufficient for this task. We produce a practical algorithm by solving two theoretical challenges: high-probability behavior and sharp constants. We give an algorithm that succeeds with probability $1-\delta$ from \[ \frac{1}{C_{\tau, \varepsilon}} \cdot \left(\lg n + O(\log^{2/3} n \log^{1/3} \frac{1}{\delta} + \log \frac{1}{\delta})\right) \] samples, where $C_{\tau, \varepsilon}$ is the optimal such constant achievable. For $\delta > n^{-o(1)}$ this is within $1 + o(1)$ of optimal, and for $\delta \ll 1$ it is the first bound within constant factors of optimal.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here