SHGNN: Structure-Aware Heterogeneous Graph Neural Network

12 Dec 2021  ·  Wentao Xu, Yingce Xia, Weiqing Liu, Jiang Bian, Jian Yin, Tie-Yan Liu ·

Many real-world graphs (networks) are heterogeneous with different types of nodes and edges. Heterogeneous graph embedding, aiming at learning the low-dimensional node representations of a heterogeneous graph, is vital for various downstream applications. Many meta-path based embedding methods have been proposed to learn the semantic information of heterogeneous graphs in recent years. However, most of the existing techniques overlook the graph structure information when learning the heterogeneous graph embeddings. This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations. In detail, we first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path. Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path. Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths. We conducted experiments on node classification and clustering tasks and achieved state-of-the-art results on the benchmark datasets, which shows the effectiveness of our proposed method.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.