ShieldNets: Defending Against Adversarial Attacks Using Probabilistic Adversarial Robustness

Defending adversarial attack is a critical step towards reliable deployment of deep learning empowered solutions for industrial applications. Probabilistic adversarial robustness (PAR), as a theoretical framework, is introduced to neutralize adversarial attacks by concentrating sample probability to adversarial-free zones. Distinct to most of the existing defense mechanisms that require modifying the architecture/training of the target classifier which is not feasible in the real-world scenario, e.g., when a model has already been deployed, PAR is designed in the first place to provide proactive protection to an existing fixed model. ShieldNet is implemented as a demonstration of PAR in this work by using PixelCNN. Experimental results show that this approach is generalizable, robust against adversarial transferability and resistant to a wide variety of attacks on the Fashion-MNIST and CIFAR10 datasets, respectively.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods